News And Notes

Nerve Stimulation Improves Hand Function After SCI

PITTSBURGH -- In a new study published online in Current Biology, researchers at the University of Pittsburgh School of Medicine demonstrated that the temporal order at which impulses from the brain and a peripheral nerve arrived at the spinal cord is critical to improving hand strength and dexterity among patients with a chronic, incomplete spinal cord injury.

More than 50 percent of all spinal cord injury survivors experience cervical lesions, which often result in impairments in hand and arm motor function, explained senior author Monica A. Perez, PhD, assistant professor of the Department of Physical Medicine and Rehabilitation and the Systems Neuroscience Institute, Pitt School of Medicine.

"We are using noninvasive electrophysiological measures to understand the mechanisms of recovery and to determine how we can best enhance transmission of remaining descending pathways to muscles in patients with incomplete spinal cord injuries," she said. "The ultimate aim is to improve the patient's ability to execute daily functions, such as eating and grasping, as independently as possible."

In the study, researchers paired transcranial magnetic stimulation of the hand area of the brain's motor cortex and electrical stimulation of a peripheral nerve in the wrist that innervates hand muscles in 19 participants with chronic cervical spinal cord injury and 14 uninjured participants. The paired pulses, which are noninvasive and painless, were given 100 times over approximately 17 minutes.

The researchers found that when impulses from the motor cortex were precisely timed to arrive at the spinal cord 1-2 milliseconds before impulses from a peripheral nerve in the wrist reached spinal motor neurons, there were improvements in hand muscle activity, strength and manual dexterity in a precision grip task in spinal cord injured patients. They also observed an increase in corticospinal transmission in both injured and uninjured individuals that lasted for up to 80 minutes.

"We are now further examining the mechanisms of this plasticity and ways to make these changes more persistent," Dr. Perez said. "In the future, this could provide a basis for developing some devices that people could take home and use to strengthen residual spinal cord synaptic connections to enhance muscle function."

The project was funded by a grant from the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, and the Paralyzed Veterans of America.

Daily News Watch Archives

View the Latest from ADVANCE


Search Jobs


Back to Top

© 2017 Merion Matters

660 American Avenue Suite 300, King of Prussia PA 19406